20615 measured reflections

 $R_{\rm int} = 0.034$

5841 independent reflections

3490 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,3-Dibromo-3-(4-bromophenyl)-1-[3-(4methoxyphenyl)sydnon-4-yl]propan-1one

Hoong-Kun Fun,^a*‡ Madhukar Hemamalini,^a Nithinchandra^b and Balakrishna Kalluraya^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India Correspondence e-mail: hkfun@usm.my

Received 15 March 2011; accepted 17 March 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.101; data-to-parameter ratio = 23.8.

In the title compound {systematic name: 4-[2,3-dibromo-3-(4bromophenyl)propanoyl]-3-(4-methoxyphenyl)-1,2,3-oxadiazol-3-vlium-5-olate}, $C_{18}H_{13}Br_3N_2O_4$, the central oxadiazole ring, which is essentially planar with a maximum deviation of 0.016(3) Å, makes dihedral angles of 29.98(16) and $52.04 (16)^{\circ}$, respectively, with the terminal bromo-substituted and methoxy-substituted benzene rings. An intramolecular $C-H \cdots O$ hydrogen bond generates an S(6) ring motif.

Related literature

For applications of sydnones, see: Rai et al. (2008); Jyothi et al. (2008). For details of chalcones, see: Rai et al. (2007). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$C_{18}H_{13}Br_3N_2O_4$	V = 1919.76 (4) Å ³
$M_r = 561.03$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 7.8024 (1) Å	$\mu = 6.33 \text{ mm}^{-1}$
b = 24.0261 (3) Å	T = 296 K
c = 10.8211 (1) Å	$0.39 \times 0.27 \times 0.13 \text{ mm}$
$\beta = 108.848 \ (1)^{\circ}$	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.191, \ T_{\max} = 0.496$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.041$	245 parameters
$vR(F^2) = 0.101$	H-atom parameters constrained
5 = 1.00	$\Delta \rho_{\rm max} = 0.63 \ {\rm e} \ {\rm \AA}^{-3}$
5841 reflections	$\Delta \rho_{\rm min} = -0.74 \ {\rm e} \ {\rm \AA}^{-3}$

Table 1

F

Iydrogen-bond	geometry	(A, °)	•
---------------	----------	--------	---

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
C8-H8A···O2	0.98	2.35	3.032 (4)	126

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and MH thank the Malaysian Government and Universiti Sains Malaysia for the Research University Grant No. 1001/PFIZIK/811160. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IS2691).

References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Jyothi, C. H., Girisha, K. S., Adithya, A. & Kalluraya, B. (2008). Eur. J. Med. Chem. 43, 2831-2834.

Rai, N. S., Kalluraya, B. & Lingappa, B. (2007). Synth. Commun. 37, 2267-2273.

Rai, N. S., Kalluraya, B., Lingappa, B., Shenoy, S. & Puranic, V. G. (2008). Eur. J. Med. Chem. 43, 1715-1720.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

supplementary materials

Acta Cryst. (2011). E67, o951 [doi:10.1107/S1600536811010002]

2,3-Dibromo-3-(4-bromophenyl)-1-[3-(4-methoxyphenyl)sydnon-4-yl]propan-1-one

H.-K. Fun, M. Hemamalini, Nithinchandra and B. Kalluraya

Comment

Sydnones constitute a well-defined class of mesoionic compounds that contain the 1,2,3-oxadiazole ring system. The study of sydnones still remains a field of interest because of their electronic structure and also because of the varied types of biological activities (Rai *et al.*, 2008). Recently, sydnone derivatives were found to exhibit promising antimicrobial properties (Jyothi *et al.*, 2008). Chalcones were obtained by the base-catalyzed condensation of 4-acetyl-3-aryl sydnones with aromatic aldehydes in alcoholic medium employing sodium hydroxide as catalyst at 0–5 °C. Bromination of chalcones with bromine in glacial acetic acid afforded dibromo chalcones (Rai *et al.*, 2007).

The molecular structure of the title compound is shown in Fig. 1. The oxadiazole (N1/N2/O3/C10/C11) ring is essentially planar, with a maximum deviation of 0.016 (3) Å for atom C11. The central oxadiazole ring makes dihedral angles of 29.98 (16)° and 52.04 (16)°, with the terminal bromo-substituted phenyl (C1–C6) and the methoxy-substituted phenyl(C12–C17) rings, respectively.

In the crystal, (Fig. 2), there is an intramolecular C8—H8A···O2 (Table 1) hydrogen bond, which generates an *S*(6) ring motif (Bernstein *et al.*, 1995).

Experimental

 $1-(3^{1}-Phenylsydnon-4^{1}-yl)-3-(p-bromophenyl)-$ propen-1-one (0.01 mol) was dissolved in glacial acetic acid (25–30 ml) by gentle warming. A solution of bromine in glacial acetic acid (30% w/v) was added to it with constant stirring till the yellow colour of the bromine persisted. The reaction mixture was stirred at room temperature for 1–2 hours. The solid which separated was filtered, washed with methanol and dried. It was then recrystallized from ethanol. Crystals suitable for X-ray analysis were obtained from 1:2 mixtures of DMF and ethanol by slow evaporation.

Refinement

All H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and were refined using a riding model, with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was used for the methyl group.

Figures

Fig. 1. The asymmetric unit of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. The intramolecular hydrogen bond is shown as a dashed line.

Fig. 2. The crystal packing of the title compound (I).

4-[2,3-dibromo-3-(4-bromophenyl)propanoyl]-3-(4-methoxyphenyl)- 1,2,3-oxadiazol-3-ylium-5-olate

$C_{18}H_{13}Br_3N_2O_4$	F(000) = 1088
$M_r = 561.03$	$D_{\rm x} = 1.941 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/n$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 6367 reflections
a = 7.8024 (1) Å	$\theta = 2.6 - 28.3^{\circ}$
b = 24.0261 (3) Å	$\mu = 6.33 \text{ mm}^{-1}$
c = 10.8211 (1) Å	T = 296 K
$\beta = 108.848 \ (1)^{\circ}$	Plate, colourless
$V = 1919.76 (4) \text{ Å}^3$	$0.39 \times 0.27 \times 0.13 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5841 independent reflections
Radiation source: fine-focus sealed tube	3490 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
φ and ω scans	$\theta_{\text{max}} = 30.5^{\circ}, \ \theta_{\text{min}} = 1.7^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)	$h = -11 \rightarrow 11$
$T_{\min} = 0.191, \ T_{\max} = 0.496$	$k = -34 \rightarrow 23$
20615 measured reflections	$l = -14 \rightarrow 15$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.101$	H-atom parameters constrained
<i>S</i> = 1.00	$w = 1/[\sigma^2(F_o^2) + (0.0481P)^2 + 0.1633P]$ where $P = (F_o^2 + 2F_c^2)/3$
5841 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$

245 parameters	$\Delta \rho_{max} = 0.63 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.74 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Br1	1.14574 (6)	-0.038999 (13)	0.37333 (4)	0.06333 (13)
Br2	0.95173 (5)	0.252012 (13)	0.22636 (3)	0.05191 (11)
Br3	0.87928 (7)	0.183591 (15)	0.60488 (4)	0.07974 (16)
01	0.9670 (3)	0.31433 (8)	0.5109 (2)	0.0525 (6)
O2	0.4433 (3)	0.22666 (9)	0.3829 (2)	0.0557 (6)
O3	0.3565 (3)	0.31283 (9)	0.4242 (2)	0.0513 (5)
O4	1.0534 (3)	0.52989 (8)	0.7386 (2)	0.0541 (6)
N1	0.4365 (3)	0.36133 (10)	0.4786 (2)	0.0462 (6)
N2	0.6087 (3)	0.35365 (9)	0.5050 (2)	0.0347 (5)
C1	0.9177 (4)	0.11794 (11)	0.2936 (3)	0.0427 (7)
H1A	0.8111	0.1332	0.2379	0.051*
C2	0.9488 (4)	0.06109 (12)	0.2902 (3)	0.0468 (7)
H2A	0.8635	0.0382	0.2329	0.056*
C3	1.1067 (4)	0.03920 (11)	0.3725 (3)	0.0420 (7)
C4	1.2369 (4)	0.07204 (13)	0.4552 (3)	0.0479 (8)
H4A	1.3447	0.0565	0.5084	0.057*
C5	1.2064 (4)	0.12855 (12)	0.4587 (3)	0.0420 (7)
H5A	1.2945	0.1512	0.5145	0.050*
C6	1.0445 (4)	0.15199 (11)	0.3793 (3)	0.0362 (6)
C7	1.0097 (4)	0.21271 (11)	0.3953 (3)	0.0337 (6)
H7A	1.1185	0.2293	0.4570	0.040*
C8	0.8505 (4)	0.22382 (11)	0.4423 (3)	0.0395 (6)
H8A	0.7381	0.2121	0.3755	0.047*
С9	0.8350 (4)	0.28446 (11)	0.4789 (3)	0.0374 (6)
C10	0.6552 (4)	0.30218 (11)	0.4736 (3)	0.0354 (6)
C11	0.4882 (4)	0.27294 (12)	0.4223 (3)	0.0429 (7)
C12	0.7239 (4)	0.40007 (11)	0.5653 (3)	0.0342 (6)
C13	0.8625 (4)	0.39242 (11)	0.6808 (3)	0.0389 (7)
H13A	0.8838	0.3576	0.7206	0.047*
C14	0.9684 (4)	0.43718 (12)	0.7358 (3)	0.0423 (7)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H14A	1.0633	0.4328	0.8135	0.051*
C15	0.9355 (4)	0.48902 (11)	0.6766 (3)	0.0406 (7)
C16	0.7926 (4)	0.49630 (12)	0.5621 (3)	0.0447 (7)
H16A	0.7685	0.5312	0.5233	0.054*
C17	0.6866 (4)	0.45139 (12)	0.5062 (3)	0.0433 (7)
H17A	0.5905	0.4557	0.4291	0.052*
C18	1.0212 (5)	0.58493 (13)	0.6871 (4)	0.0671 (10)
H18A	1.1193	0.6087	0.7345	0.101*
H18B	0.9100	0.5987	0.6954	0.101*
H18C	1.0126	0.5844	0.5966	0.101*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0987 (3)	0.02994 (17)	0.0680 (2)	0.00875 (16)	0.0361 (2)	0.00131 (14)
Br2	0.0698 (2)	0.04374 (19)	0.04443 (19)	0.00350 (15)	0.02161 (16)	0.00642 (13)
Br3	0.1518 (4)	0.0394 (2)	0.0769 (3)	0.0121 (2)	0.0770 (3)	0.01108 (17)
01	0.0444 (12)	0.0336 (11)	0.0857 (16)	-0.0076 (9)	0.0296 (11)	-0.0153 (11)
O2	0.0558 (13)	0.0399 (12)	0.0737 (15)	-0.0161 (11)	0.0243 (11)	-0.0118 (11)
O3	0.0404 (12)	0.0495 (13)	0.0626 (14)	-0.0055 (10)	0.0149 (10)	-0.0070 (11)
O4	0.0582 (14)	0.0369 (12)	0.0598 (14)	-0.0091 (10)	0.0087 (11)	-0.0069 (10)
N1	0.0429 (15)	0.0402 (14)	0.0546 (15)	-0.0011 (11)	0.0145 (12)	-0.0050 (12)
N2	0.0362 (13)	0.0325 (12)	0.0370 (12)	0.0008 (10)	0.0140 (10)	-0.0008 (9)
C1	0.0403 (16)	0.0350 (15)	0.0506 (17)	0.0012 (12)	0.0116 (14)	-0.0072 (13)
C2	0.0555 (19)	0.0331 (15)	0.0527 (18)	-0.0051 (14)	0.0187 (15)	-0.0107 (14)
C3	0.0583 (19)	0.0270 (14)	0.0501 (17)	0.0016 (13)	0.0308 (15)	0.0008 (12)
C4	0.0545 (19)	0.0405 (17)	0.0468 (18)	0.0080 (15)	0.0138 (15)	0.0036 (14)
C5	0.0470 (17)	0.0357 (15)	0.0404 (16)	-0.0007 (13)	0.0102 (14)	-0.0026 (12)
C6	0.0432 (16)	0.0293 (14)	0.0398 (15)	-0.0002 (12)	0.0186 (13)	-0.0050 (11)
C7	0.0377 (15)	0.0291 (13)	0.0360 (14)	-0.0008 (11)	0.0142 (12)	-0.0021 (11)
C8	0.0493 (17)	0.0288 (14)	0.0441 (16)	-0.0053 (12)	0.0202 (13)	-0.0030 (12)
C9	0.0457 (16)	0.0268 (13)	0.0453 (16)	-0.0017 (12)	0.0225 (13)	-0.0012 (12)
C10	0.0413 (16)	0.0286 (14)	0.0397 (15)	-0.0034 (11)	0.0177 (12)	-0.0007 (11)
C11	0.0458 (17)	0.0410 (17)	0.0443 (17)	-0.0078 (14)	0.0178 (14)	0.0008 (13)
C12	0.0389 (15)	0.0261 (13)	0.0404 (15)	0.0007 (11)	0.0166 (12)	-0.0047 (11)
C13	0.0467 (17)	0.0294 (14)	0.0410 (16)	0.0092 (12)	0.0147 (13)	0.0059 (12)
C14	0.0428 (17)	0.0390 (16)	0.0407 (16)	0.0061 (13)	0.0074 (13)	-0.0013 (13)
C15	0.0457 (17)	0.0314 (15)	0.0461 (17)	0.0012 (12)	0.0168 (14)	-0.0043 (12)
C16	0.0534 (18)	0.0292 (15)	0.0476 (17)	0.0017 (13)	0.0110 (15)	0.0037 (13)
C17	0.0453 (17)	0.0361 (16)	0.0430 (16)	0.0056 (13)	0.0067 (13)	0.0032 (12)
C18	0.082 (3)	0.0320 (18)	0.084 (3)	-0.0109 (17)	0.022 (2)	-0.0017 (17)

Geometric parameters (Å, °)

Br1—C3	1.903 (3)	С5—Н5А	0.9300
Br2—C7	1.976 (3)	C6—C7	1.504 (4)
Br3—C8	1.956 (3)	С7—С8	1.510 (4)
O1—C9	1.211 (3)	С7—Н7А	0.9800
O2—C11	1.202 (3)	C8—C9	1.525 (4)

O3—N1	1.362 (3)	C8—H8A	0.9800
O3—C11	1.411 (4)	C9—C10	1.449 (4)
O4—C15	1.364 (3)	C10-C11	1.425 (4)
O4—C18	1.426 (4)	C12—C13	1.376 (4)
N1—N2	1.293 (3)	C12—C17	1.376 (4)
N2—C10	1.363 (3)	C13—C14	1.369 (4)
N2—C12	1.449 (3)	C13—H13A	0.9300
C1—C6	1.384 (4)	C14—C15	1.386 (4)
C1—C2	1.390 (4)	C14—H14A	0.9300
C1—H1A	0.9300	C15—C16	1.385 (4)
C2—C3	1.371 (4)	C16—C17	1.375 (4)
C2—H2A	0.9300	C16—H16A	0.9300
C3—C4	1.367 (4)	C17—H17A	0.9300
C4—C5	1.381 (4)	C18—H18A	0.9600
C4—H4A	0.9300	C18—H18B	0.9600
C5—C6	1.396 (4)	C18—H18C	0.9600
N1-03-C11	110 7 (2)	Br3	109.8
$C_{15} - O_{4} - C_{18}$	110.7(2) 118.0(2)	01 - C9 - C10	109.0 124.1(2)
$N_{2} N_{1} O_{3}$	105.8 (2)	01 - 09 - 08	121.1(2) 120.6(3)
N1N2C10	114.6 (2)	$C_{10} - C_{9} - C_{8}$	120.0(3) 115.3(2)
N1 - N2 - C10	114.0(2)	$N_{2} - C_{10} - C_{11}$	115.5(2) 105.1(2)
11 - 12 - C12 C10 - N2 - C12	110.0(2) 129.4(2)	N2 - C10 - C9	105.1(2) 126.1(2)
$C_{10} = 10 = 102$	129.4(2) 120.3(3)	$C_{11} = C_{10} = C_{9}$	120.1(2) 128.5(3)
C6-C1-H1A	119.8	02-011-03	120.3(3)
C_{2} C_{1} H_{1}	119.8	02 - C11 - C10	120.2(3) 136.0(3)
$C_2 = C_1 = M_1 X$	119.0	02 - 011 - 010	103.8(2)
C_{3} C_{2} H_{2}	119.2 (3)	C_{13} C_{12} C_{17}	103.0(2) 121.0(3)
C_{1} C_{2} H_{2}	120.4	$C_{13} = C_{12} = C_{17}$	121.9(3) 110.8(2)
C1 - C2 - 112 A	120.4	C17 - C12 - N2	119.0(2) 118.2(2)
$C_{4} = C_{3} = C_{2}$	121.7(3) 1189(2)	C1/-C12-102	110.2(2) 1185(3)
C_{2} C_{3} Br_{1}	110.9(2) 119.4(2)	C14 - C13 - H13A	120.8
$C_2 = C_3 = D_1^2$	119.4(2) 110.2(3)	C12_C13_H13A	120.8
$C_3 = C_4 = C_3$	119.2 (3)	$C_{12} - C_{13} - C_{14} - C_{15}$	120.6(3)
$C_{5} = C_{4} = H_{4}$	120.4	$C_{13} = C_{14} = C_{13}$	120.0 (5)
C_{3}	120.4	C_{15} C_{14} H_{14A}	119.7
$C_4 = C_5 = C_0$	120.0 (3)	C13 - C14 - M14A	119.7 124.7(2)
$C_4 = C_5 = H_5 A$	119.7	04 - 015 - 016	124.7(3)
C_{1} C_{6} C_{5}	119.7	$C_{14} = C_{15} = C_{14}$	113.1(3) 120.2(3)
$C_1 = C_0 = C_3$	110.9(3)	$C_{10} = C_{15} = C_{14}$	120.2(3)
$C_1 = C_0 = C_7$	122.2(2)	C17 - C16 - C13	119.4 (5)
C_{5}	110.0(2)	$C_{1} = C_{10} = H_{10}$	120.3
$C_{0} = C_{1} = C_{0}$	114.1(2) 110.67(18)	$C_{15} = C_{10} = 110 \text{ A}$	120.3 110 5 (3)
$C_{0} = C_{1} = B_{12}$	105.06 (18)	C16_C17_H17A	120.3
C6_C7_H7A	108.00 (10)	C12_C17_H17A	120.3
C8_C7_H7A	100.7	$C_{12} - C_{17} - H_{18} A$	120.5
со—с/—н/А Br2—С7—H7A	108.9	04-C18-H18B	109.5
$D_{12} - C_{1} - H_{1/A}$	113 5 (2)	H18A - C18 - H18P	109.5
$C_7 = C_9 = C_7$	110.3(2)	$\Omega = 10 - 110 $	109.5
$C_1 = C_0 = B_{13}$	103.54(17) 103.54(18)		109.5
C) C0-D15	103.34 (10)	1110/1-010-11100	107.5

supplementary materials

С7—С8—Н8А	109.8	H18B—C18—H18C	109.5
С9—С8—Н8А	109.8		
C11—O3—N1—N2	2.3 (3)	C12—N2—C10—C9	-8.6 (4)
O3—N1—N2—C10	-0.6 (3)	O1C9C10N2	-1.1 (5)
O3—N1—N2—C12	-179.6 (2)	C8—C9—C10—N2	178.2 (2)
C6—C1—C2—C3	-0.2 (5)	O1-C9-C10-C11	171.4 (3)
C1—C2—C3—C4	-1.9 (5)	C8—C9—C10—C11	-9.3 (4)
C1—C2—C3—Br1	177.5 (2)	N1-03-C11-02	176.8 (3)
C2—C3—C4—C5	1.9 (5)	N1-03-C11-C10	-3.0 (3)
Br1—C3—C4—C5	-177.5 (2)	N2-C10-C11-O2	-177.3 (3)
C3—C4—C5—C6	0.2 (5)	C9—C10—C11—O2	9.0 (6)
C2—C1—C6—C5	2.3 (5)	N2-C10-C11-O3	2.5 (3)
C2-C1-C6-C7	-174.2 (3)	C9—C10—C11—O3	-171.2 (3)
C4—C5—C6—C1	-2.3 (5)	N1—N2—C12—C13	125.9 (3)
C4—C5—C6—C7	174.3 (3)	C10-N2-C12-C13	-52.8 (4)
C1—C6—C7—C8	60.9 (4)	N1—N2—C12—C17	-52.1 (3)
C5—C6—C7—C8	-115.6 (3)	C10-N2-C12-C17	129.2 (3)
C1—C6—C7—Br2	-57.4 (3)	C17—C12—C13—C14	-1.7 (4)
C5—C6—C7—Br2	126.1 (2)	N2-C12-C13-C14	-179.6 (3)
C6—C7—C8—C9	170.7 (2)	C12-C13-C14-C15	0.4 (4)
Br2—C7—C8—C9	-67.9 (2)	C18—O4—C15—C16	4.2 (5)
C6—C7—C8—Br3	55.0 (3)	C18-04-C15-C14	-176.5 (3)
Br2—C7—C8—Br3	176.43 (11)	C13-C14-C15-O4	-178.2 (3)
C7—C8—C9—O1	-24.4 (4)	C13-C14-C15-C16	1.2 (5)
Br3—C8—C9—O1	95.3 (3)	O4-C15-C16-C17	177.7 (3)
C7—C8—C9—C10	156.2 (2)	C14—C15—C16—C17	-1.6 (5)
Br3—C8—C9—C10	-84.1 (2)	C15-C16-C17-C12	0.3 (5)
N1-N2-C10-C11	-1.3 (3)	C13-C12-C17-C16	1.4 (5)
C12—N2—C10—C11	177.5 (2)	N2-C12-C17-C16	179.3 (3)
N1—N2—C10—C9	172.7 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H··· A
C8—H8A…O2	0.98	2.35	3.032 (4)	126

Fig. 1

Fig. 2

